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Abstract. Medication adherence is critical for the recovery of adoles-
cents and young adults (AYAs) who have undergone hematopoietic cell
transplantation (HCT). However, maintaining adherence is challenging for
AYAs after hospital discharge, who experience both individual (e.g. phys-
ical and emotional symptoms) and interpersonal barriers (e.g., relational
difficulties with their care partner, who is often involved in medication
management). To optimize the effectiveness of a three-component digital
intervention targeting both members of the dyad as well as their relation-
ship, we propose a novel Multi-Agent Reinforcement Learning (MARL)
approach to personalize the delivery of interventions. By incorporating the
domain knowledge, the MARL framework, where each agent is responsible
for the delivery of one intervention component, allows for faster learning
compared with a flattened agent. Evaluation using a dyadic simulator
environment, based on real clinical data, shows a significant improvement
in medication adherence (approximately 3%) compared to purely random
intervention delivery. The effectiveness of this approach will be further
evaluated in an upcoming trial.

Keywords: Reinforcement Learning · Dyadic Relationships · Medication
Adherence · Digital Health

1 Introduction

For patients who have undergone allogeneic hematopoietic stem cell trans-
plantation (HCT), strict adherence to medication regimens, such as prophylac-
tic immunosuppressant therapy (i.e., calcineurin inhibitors, such as tacrolimus
or cyclosporine, taken twice-daily), is crucial for mitigating the risk of acute
graft-versus host disease (GVHD) [4]. Acute GVHD occurs in 50-70% of patients
following HCT. A lower medication adherence (60%) rate is shown to associate
with higher severity of GVHD [5].

The challenges of adherence management are amplified among adolescents
and young adults (AYAs), who often demonstrate poorer medication adherence
[15,12,8]. For AYAs with cancer, self-management rarely involves the individual
alone. Instead, up to 73% of family care partners bear the primary responsibility
for managing cancer-related medications for AYAs [14].
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Many of these dyads express a desire to move toward sharing these respon-
sibilities with each other [14]. Indeed, for AYAs with chronic health conditions,
this developmental period often marks a shift from relying solely on a caregiver
to taking more personal responsibility for health care. While shifts in autonomy
versus dependence and navigating the ensuing family conflict that can arise from
these new dynamics are normative parts of AYA development, difficult family
interactions can have a detrimental impact on medication adherence. For example,
in a meta-analysis [13], higher level of family conflict and lower levels of family
cohesion were significantly associated with worse medication adherence across
pediatric illnesses and age groups.

After being discharged from the hospital, both individuals in the dyad face
significant emotional and physical challenges as they adjust to managing medica-
tion regimens outside the hospital environment. For AYAs, the daily challenges
of managing complex medication regimens, coping with treatment side effects,
coping with stress, and maintaining normal activities in the context of a complex
medical regimen can create distress in their home environment. Similarly, care
partners must balance caregiving responsibilities with their personal obligations.
Those who shoulder heavy caregiving responsibilities at home face higher physical
and emotional stressors, which can impede their ability to provide effective care,
make sound decisions, and support their AYA’s self-care [16].

This need for support outside the inpatient environment motivates the de-
velopment of interventions that leverage digital technologies such as mobile
devices [21]. Digital interventions are promising for supporting both AYAs and
care partners at home on a daily basis, compared to traditional clinical support
delivered with limited frequency (e.g., weekly clinical visits for post-HCT AYAs).
There is strong heterogeneity across dyads and the users’ context are constantly
changing, which makes it important to personalize the intervention delivery to
optimize the effectiveness of digital interventions. Reinforcement Learning (RL),
a machine learning technique that adaptively learns the optimal behavior in an
unknown environment to maximize cumulative rewards, is a promising approach
for achieving this personalization. RL has been successfully applied in a variety
of digital interventions [7,1,18,3].

In this paper, we describe our work in developing an RL algorithm for
ADAPTS-HCT [17]. ADAPTS-HCT is a digital intervention for improving medi-
cation adherence by AYAs over 100 days after receiving HCT. ADAPTS-HCT
integrates three components: (1) twice-daily messages promoting positive emo-
tions for the AYA, (2) daily messages focusing on coping and self-care strategies
for the care partner, and (3) a weekly collaborative game for improving their
relationship [17]. We call the three components AYA, care partner, and relation-
ship component, respectively. Table 1 summarizes these components. The fully
developed intervention package will be evaluated in the upcoming clinical trial.

Goals. Our goal is to design an RL algorithm that can personalize the delivery
of these interventions to optimize their effectiveness. Given the complexity of the
dyadic structure, we identify the following two key challenges:
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Table 1: Intervention components in ADAPTS-HCT
Component Intervention

AYA Twice-daily positive psychology messages
Care partner Daily positive psychology messages

Relationship Weekly collaborative game designed to facilitate
positive dyadic interpersonal relationship

1. Managing multiple intervention decisions across different multi-
scales. There are three intervention components, each requiring decisions to
be made at a different time scales. The decision-making occurs twice daily
for AYAs, daily for care partners, and weekly for the relationship component.
Making decisions on multiple timescales complicates the algorithm design.

2. Accelerating learning in noisy, data-limited settings. Observed data
in digital intervention deployment is quite noisy [19]. Furthermore, limited
data will be available to support in decision making for dyads recruited early
in the clinical trial. Additionally, less data is available for learning decisions
that occur at slower timescales. These factors necessitate a sample-efficient
algorithm that learns faster given limited data.

Contribution. Our contribution is a novel multi-agent RL (MARL) framework
involving three RL agents, where each agent is responsible for making decisions for
one specific intervention component and operates at the timescale corresponding
to its intervention component timescale, which directly addresses challenge (1)
about multi-scale decision-making.

The use of MARL decouples the decision processes of different intervention
components, thus improving interpretability of the agent model design. This
improved interpretability allows us to incorporate domain knowledge into the
agent-specific algorithm designs to address challenge (2). To further accelerate
learning, we propose a novel reward engineering method that learns a less noisy
surrogate reward function for each component. Through evaluation in a carefully
designed dyadic environment, we demonstrate both the superior performance
of our proposed algorithm and strong collaborative behavior among the three
agents. Lack of collaboration is often a critical issue in MARL [9].

2 RL Framework and Domain Knowledge

We start with formulating the intervention decision making as an RL problem,
where we underscore the challenge in the multiple time scales. HCT treatment
is followed by an outpatient 14-weeks twice-daily medication regimen. Decision
times within the 14 weeks are denoted by (w, d, t) where w ∈ {1, . . . , 14} is the
week index, d ∈ {1, . . . , 7} is the day index, and t ∈ {1, 2} is the decision window
within a day.

Primary goal. The primary goal is to make decisions at each decision time t
to maximize cumulative sum of medication adherence

∑14
w=1

∑7
d=1

∑2
t=1 R

AYA
w,d,t,
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Table 2: Summary of variables about each target component
Target Variable Type Description

AYA
RAYA

w,d,t

AAYA
w,d,t

BAYA
w,d,t

binary
binary

continuous

Medication adherence at time t on day d in week w
Intervention at time t on day d in week w
App burden at time t on day d in week w

Care partner
Y CARE
w,d

ACARE
w,d

BCARE
w,d

continuous
binary

continuous

Psychological distress on day d in week w
Intervention on day d in week w
App burden on day d in week w

Relationship Y REL
w

AREL
w

binary
binary

Relationship quality at the end of week w
Game intervention at the beginning of week w

where RAYA
w,d,t is medication adherence at window t on day d in week w. See Table

2, for selected information that will be collected on the dyad.
Action space. All actions are binary (deliver versus do not deliver interven-

tion content); see Tables 1,2. When the current time (d = 1, t = 1) is the first
decision time on the first day of the week, the agent chooses a three-dimensional
action corresponding to all three interventions components. If the current time is
the first time on a day after the first day of the week (d > 1, t = 1), the agent
chooses a two-dimensional action corresponding to only the AYA intervention and
the care partner components. At the second time on each day (t = 2) the agent
chooses a one-dimensional action corresponding to only the AYA intervention
component.

Observation space. Apart from the dynamic action space, we collect obser-
vations about different components at different time scales as well; see Table 2.
At each time (w, d, t), we collect the current medication adherence and digital
intervention burden from the AYA component. In the end of each day d, we
collect the psychological distress and digital intervention burden from the care
partner component. In the end of a week w, we collect the relationship quality
from questionnaires from both the AYA and the care partner.

3 Domain Knowledge through Causal Diagram

Our algorithm design is guided by domain knowledge encoded as the causal
diagram in Fig. 1. This diagram describes the scientific team’s understanding of
the primary causal relationships between the variables in each component listed
in Table 2. Note that the causal relationships are likely more complex and direct
paths may exist between any two variables. However the scientific team believes
that these other paths are likely to be less detectable given the noise in digital
intervention data. We summarize the primary pathways that interventions can
take to effect the AYA’s adherence in the following.

1. AYA intervention. The AYA interventions AAYA
w,d,t should directly influence

the immediate AYA’s adherence RAYA
w,d,t (black arrows).
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Fig. 1: Causal diagram for ADAPTS-HCT intervention 1. We categorize the
variables into three components: AYA component (marked in black), care partner
component (marked in red), and relationship component (marked in green). Each
component operates at different time scales. Variables in the AYA component
evolve on a twice-daily basis, while the care partner component operates on a
daily basis. The relationship component operates on a weekly basis. The arrows
indicate the direct causal effects.

1 In the causal inference literature, this is called a causal Directed Acyclic Graph (DAG),
a graphical representation of causal relationships among a set of variables [11].
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2. Game intervention. The game intervention AREL
w has two pathways by

which it is expected to effect AYA’s adherence. First, AREL
w is expected to

increase the AYA’s burden BAYA
w,d,t throughout the week w. And AYA’s burden

BAYA
w,d,t is expected to decrease the AYA’s adherence RAYA

w,d,t (blue arrows).
Second, the game intervention AREL

w is expected to effect next week AYA’s
adherence RAYA

w+1,d,t by improving the end of the week relationship quality
Y REL
w (green arrows).

3. Care partner intervention. The care-partner intervention ACARE
w,d is expected

to effect the AYA’s adherence indirectly. First, ACARE
w,d should decrease the

care partner’s psychological distress Y CARE
w,d , which should increase the end of

week relationship quality Y REL
w (yellow arrows). Second, ACARE

w,d should increase
the care partner’s burden BCARE

w,d , which should decrease the the end of week
relationship quality Y REL

w (blue arrows).

We further note that the variables from different components are generally
independent conditioned on the bottleneck variables, e.g., the relationship quality
that blocks all the paths from the care partner variables to the AYA’s adherence.
This forms the basis of our multi-agent RL design.

4 Proposed Multi-Agent RL Approach

The conditional independence property observed from Fig. 1 motivates us to
design a multi-agent RL (MARL) comprising three agents: the AYA agent, the
care partner agent, and the relationship agent. Each makes decisions at different
time scales for their own component.

The MARL approach allows us to tailor the agent design choices for each
agent to optimize the learning speed. Our base RL algorithm for each agent is
Randomized Least Square Value Iteration (RLSVI) [10], which has been proven
as stable in deployment of mobile health applications [18,3]. Additionally, we use
linear models, which helps in discussions of the algorithm and its parameters
with domain scientists.

We construct agent-specific features based on Fig. 1. Specifically, the AYA
agent’s model uses its own variables (BAYA

w,d,t, R
AYA
w,d,t−1) and the variables in the

relationship component (Y REL
w−1, A

REL
w ). Similarly, the care partner agent uses its own

variables, as well as the variables in the relationship component. The relationship
agent’s model uses Y REL

w−1, and previous weeks’ BAYA
w−1,7,2, BCARE

w−1,7, as well as a
weighted average of AYA adherence and care partner distress in the past week.

4.1 Surrogate Reward Function Design Through Domain Knowledge

Typical MARL [9] with independent learners considers agents making decisions
without communication. In our study, the lack of communication is due to the
different time scales–the relationship agent that makes decisions in the beginning
of a week may not predict the AYA and care partner agents’ decisions throughout
the week. This may prevent the agents from collaborating. For example, the
relationship agent may choose to always intervene so as to improve the relationship
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quality (the primary goal of the game intervention), which may not be optimal
for the AYA’s adherence.

Furthermore, the effects of care partner intervention and the game intervention
are highly delayed. The game intervention improves end of week relationship
quality with a significant delayed effect onto the adherence in the next week. The
care partner intervention (positive messages for the care partner) is designed to
mitigate the care partner’s psychological distress, which only has indirect and
delayed effects on the AYA’s adherence.

To address the above two issues, we engineer the reward function to account for
the delayed effects and across-component effects of each intervention component
to promot collaboration. Similar reward engineering in the context of digital
interventions is discussed in [20]. Our approach is distinct in that we explore
the principles for incorporating domain knowledge to guide the reward function
design.

Domain knowledge informed surrogate reward functions. We intro-
duce the surrogate reward functions for the relationship agent and the care
partner agent. As informed by Fig. 1, the delayed effect of the game intervention
is through the relationship quality and the AYA burden. This motivates us
to fit a linear model to predict the sum of medication adherence within week
w,

∑7
d=1

∑2
t=1 R

AYA
w,d,t, using (1, Y REL

w−1, B
AYA
w,1,1, A

REL
w , AREL

w · Y REL
w−1) as the covariates.

To account for the delayed effect, we engineer the surrogate reward function
for the relationship agent as: rRELw = (1, Y REL

w−1, B
AYA
w,1,1, A

REL
w , AREL

w · Y REL
w−1)β

REL +
maxa(1, Y

REL
w , BAYA

w+1,1,1, a, a · Y REL
w )βREL, where βREL ∈ R5 are Bayesian linear re-

gression estimates. 1 The above reward yields a two-step greedy policy, which is
a good enough approximation for the total sum of the medication adherence. We
opt for a simple, linear model here because the bias trade-off is justified by the
faster learning and reduction in noise.

The design of the care partner agent is similar. A key observation is that the
end of the week relationship quality blocks all the paths from the care partner
variables to the AYA’s adherence. Thus, we fit a linear model to predict the end of
week relationship quality Y REL

w+1 using (1, Y CARE
w,d , BCARE

w,d+1, Y
REL
w−1, A

CARE
w,d ) as covariates.

The surrogate reward function is: rCAREw,d = (1, Y CARE
w,d , BCARE

w,d+1, Y
REL
w−1, A

CARE
w,d )β

CARE,
where βCARE ∈ R5 are Bayesian linear regression estimates.

5 Results

We simulate a dyadic environment to evaluate the performance of the proposed
framework. The environment design should replicate the noise level and structure
that we expect to encounter in the forthcoming ADAPTS-HCT clinical trial.

Our environment is based on Roadmap 2.0 dataset involving 171 dyads,
each consisting of a patient undergone HCT (target person) and a care partner.
Roadmap 2.0 provides daily positive psychology interventions to the care partner
1 We choose the prior mean to reflect our guesses on the sign the coefficients. The

prior variance is chosen so the prior mean dominates until around the 5th dyads. The
complete prior is provided in Appendix.
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only. Roadmap 2.0 collects wearable devices data, for example, physical activity,
and self-report data, for example, mood score.

We build upon the environment design in [6], which also uses the Roadmap
2.0 data, but primarily focuses on AYA and relationship intervention component.
We extend the environment to include the care partner intervention component.
Specifically, we fit a separate multi-variate linear model for each component’s
outcome (ie., RAYA

w,d,t, Y
CARE
w,d , Y REL

w ) in the dataset. These models simulate the user
trajectories under no intervention.

To simulate outcomes under treatments, we impute the treatment effects of
the interventions and the effects of app burden, so the induced standard treatment
effects (STE) 2 are around 0.15, 0.3, and 0.5. These STEs are commonly seen
in behavioral science studies [2]. A complete description and code of the dyadic
environment is provided in supplementary material 3.

5.1 Cumulative Adherence Improvement

We simulate 25 dyads, the planned sample size in the upcoming pilot study,
by sampling dyads sequentially with replacement from Roadmap 2.0 dataset.
Each dyad is simulated for 14 weeks. We implement the following three algo-
rithms: SingleAgent, MultiAgent, and MultiAgent+SurrogateRwd. Here the
SingleAgent is the algorithm that trains a single agent that outputs all the
three types of actions. The MultiAgent is the proposed MARL algorithm
using the adherence as the learning reward signal for all three agents. The
MultiAgent+SurrogateRwd is the proposed MARL algorithm using the sur-
rogate reward functions. The full details of the algorithms are described in
supplementary material.

We compare the proposed RL algorithms with a random policy, where
P (AAYA

w,d,t = 1) = P (ACARE
w,d = 1) = P (AREL

w = 1) ≡ 0.5 in terms of the cumu-
lative adherence improvement.

We also observe that all the algorithms can make more significant improvement
over the random policy under a higher STE. SingleAgent takes longer to learn
due to the larger number of parameters compared to MultiAgent. We also see an
advantage of using surrogate rewards through an increased cumulative adherence
at all levels of STE. Notice that for a low STE, the learning is slow, which is
intuitive given that the the signal-to-noise ratio is low in such an environment.
Additional ablation studies and analysis on the collaborating behavior is provided
in the supplementary material.

6 Discussion

In this paper, we propose an MARL algorithm that effectively learns to opti-
mize delivery of the ADAPTS-HCT digital interventions. While this presents a
2 STE here is defined as the difference in the mean of the primary outcomes under

the proposed intervention package and these under no intervention, which is further
standardized by the standard deviation under no intervention.

3 https://github.com/StatisticalReinforcementLearningLab/ADAPTS-HCT-AIME

https://github.com/StatisticalReinforcementLearningLab/ADAPTS-HCT-AIME
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Fig. 2: Cumulative adherence improvement over the uniform random policy for all
three components under dyadic environments with different STEs. The confidence
interval is the standard deviation based on 1000 independent runs.

significant step towards preparing for the ADAPTS-HCT clinical trial, several
challenges remain to be addressed. First, in the real-clinical trial, the partici-
pants are recruited incrementally with significant overlaps, whereas our dyadic
environment assumes a simple sequential recruitment. Second, the clinical trial
study emphasizes the need for after-study analysis, such as causal inference on
treatment effects, which often requires smooth allocation functions [22]. Addi-
tionally, there is room to further improve algorithm performance. For example,
our proposed algorithm pools data across dyads to reduce learning variance but
does not account for heterogeneity across dyads. The algorithm may benefit from
a more flexible pooling, e.g., a random effect model.
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