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A Mobile Health Clinical Trial

▶ Target population:
Adolescents and young adults (AYA) with blood cancer
Received hematopoietic stem cell transplantation (HCT)

▶ Severe complication:
graft-versus-host disease (GVHD)
must take medication twice-daily

▶ Low medication adherence (60%)!

▶ ADAPTS-HCT mobile health clinical trial
Deliver digital interventions to improve AYA medication adherence
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Dyadic Structure and Intervention Package

▶ Dyadic structure
AYAs are vulnerable groups (very sick!)
73% of care-partners (often parents) manage AYA medication

▶ Intervention package
Daily positive psychology messages (mitigate psychological distress)
Weekly collaborative word-guessing game (improve relationship quality)
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Message View and Game View

Figure: An example app view used during focus group interviews
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Environment Formulation

Each dyad stays for 100 days with t = 1, . . . ,200 (twice-daily) decision times
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Positive psychology messages (PPM)

Heterogeneity in action spaces at different t!
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A Hierarchical Multi-Agent Algorithm

Three agents:
▶ AYA agent (twice-daily): AAYA

t for all t
▶ Care-partner agent (daily): ACARE

d for day d
▶ Game agent (weekly): AGAME

w for week w

▶ Lower level agents include higher level agents’ action in their state

Advantages:
▶ Flexible feature constructions
▶ Flexible reward designs
▶ Flexible algorithm designs
▶ Decentralization

One agent does not model other agents’ behavior
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Challenges

Inherited challenges from the mHealth environment
▶ Low signal-to-noise ratio
▶ Low sample size (25 dyads)
▶ High non-stationarity within each dyad: increasing app burden

Challenges from multi-agent RL:
▶ Non-stationarity due to the learning of other agents

Leveraging environment structure (or domain knowledge)!
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Knowledge on the mechanism

Learning ACARE
d through primary outcomes (adherence) is extremely difficult
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Figure: Causal DAG based on domain knowledge

▶ The effect from ACARE
d to future AYA adherence is distal

▶ Other agents’ action creates non-stationarity
Care-partner agent does not predict what AYA agent will do in the future
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Tackle Distal Effect

Solution: construct surrogate rewards through mediators

▶ RCARE
d : negative next day care-partner psychological distress

▶ RGAME
w : next week relationship quality

▶ RAYA
t : time t medication adherence



10/23

Evaluation and Base Algorithm

Results evaluation: build a “digital twin” of the target population
▶ Based on available data + health domain expertise
▶ Replicate the expected noise structure

Base algorithm:
▶ Infinite horizon RLSVI for all three agents
▶ Action centering (or orthogonal estimation) [1, 2]

Mititgate non-stationarity
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Results
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Theory in Surrogate Rewards

Questions:
▶ Does surrogate rewards induce the same optimal policy as true rewards?
▶ What is the benefit of using surrogate reward?
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Theory in Surrogate Rewards

Consider linear MDPs (Markov Decision Process) with mediators
▶ State St ∈ S, action At ∈ A, mediator Mt ∈ RdM

▶ Feature mapping ϕ : S ×A 7→ Rd

Transition dynamic:

St+1 ∼ ⟨ϕ(St,At), µS(·)⟩
Mt ∼ Θϕ(St,At) + ηt and Rt = ⟨Mt, θR⟩+ ϵt

▶ Θ ∈ RdM×d; ηt ∈ RdM and ϵt ∈ R are noise
▶ Property: linear Q-value function

Qπ(s,a) = ⟨ϕ(s,a), ωπ⟩ for some ω ∈ Rd
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MDP Variance Quantity

Variance quantity:

V := sup
s,a,π

Vπ(s,a) := sup
s,a

Var (Rt + γVπ(St+1) | St = s,At = a) .

There exists online algorithm with sample complexity linear in
√
V [3]
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Reduction in Variance Quantity

Surrogate reward through mediator (if know θR):

R̄t = E[Rt | Mt] = M⊤
t θR

▶ Same Q-function: Q̄π = Qπ

▶ Constant reduction in variance quantity:

Vπ(s,a)− V̄π(s,a) = Var(ϵt)

The reduction is significant if

Var(ϵt) ≫ Var(η⊤t θR)
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Does the same reward design (E[Rt | Mt]) work in the multi-agent setting?
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Extension to Multi-agent RL (MARL)

Multi-agent linear MDPs with mediators:

Mi,t ∼ ⟨ϕi(St,Ai,t), µi(·)⟩, (1)

St+1 ∼
∑
i

⟨Mi,t, νi(·)⟩ and Rt =
∑
i

⟨Mi,t,θi⟩+ ϵt (2)

▶ Each agent has their own mediator Mi,t
▶ Effects of different mediators are additive

St

A1,t

A2,t

M1,t

M2,t

St+1Rt
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Failure of R̄i,t = M⊤
i,tθi

The reward design of R̄i,t = M⊤
i,tθi is no longer valid

▶ Think about θi = 0: all policies πi are optimal for reward R̄i,t
▶ However, Ai,t → St+1 → Mj,t+1 → Rt+1 for j ̸= i with θj ̸= 0

This is the case in ADAPTS-HCT
▶ Care-partner psychological distress (M2,t) has no direct arrow to Rt

▶ The above design design will give R̄i,t ≡ 0 (×)

We must predict the delayed effects of mediators!
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Decompose Q-value Function

The surrogate reward must account for the delayed effect onto other mediators

We first show that the value function can indeed be decomposed

Proposition (Decomposing Q-value function)

For any joint policy π̄ : S 7→ AN, there exists functions f π̄i : S ×Ai 7→ R such that

Qπ̄(s,a) =
∑
i

f π̄i (s,ai)
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A valid Design

Define βπ̄
i,j =

∫
s′ f

π̄
j (s

′, π̄(s′)j)νi(s′)ds′: effects of Mi,t onto agent j’s next-step value

Theorem (A valid design)

Choose the following reward design

Ri,t = M⊤
i,t

θi + γ
∑
j ̸=i

βπ̄∗

i,j

 .

The advantage function is consistent
f π̄∗

i (s,a′
i)− f π̄∗

i (s,ai) ≡

Eπ̄∗

[ ∞∑
t=1

γt−1Ri,t | St = s,Ai,t = a′
i

]
− Eπ̄∗

[ ∞∑
t=1

γt−1Ri,t | St = s,Ai,t = ai

]
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Discussion in ADAPTS-HCT

In ADAPTS-HCT, let i = 1,2,3 be AYA, care-partner, and game agent, respectively
▶ Care-partner mediator M2,t, psychological distress, a scalar

M2,t has no direct impact on adherence θ2 = 0
M2,t has a negative impact onto relationship: βπ̄∗

2,3 < 0
M2,t has no direct impact onto AYA: βπ̄∗

2,1 = 0
▶ Thus, R2,t = −M2,t will induce the correct optimal policy
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